NCERT Solutions for Class 10 Math Exercise 5 Arithmetic Progressions | Arithmetic Series
NCERT Solutions for Class 10 Math Exercise 5 Arithmetic Progressions Arithmetic Series class 10th maths chapter 5 class 10 maths. Here We learn what is in class 10 maths solution chapter 5 arithmetic progression and how to solve questions with easiest method. In this chapter we solve the question of NCERT Solutions for Class 10 Maths chapter 5 exercise 5.1, class 10 maths chapter 5 exercise 5.2, class 10 maths chapter 5 exercise 5.3 and class 10 maths chapter 5 exercise 5.4. chapter 5 class 10 maths Arithmetic Series
10 maths ncert solutions Chapter 5 arithmetic progression are part of NCERT Solutions for Class 10 Maths PDF . Here we have given NCERT Solutions for ncert class 10, ncert solutions for class 10 maths. Ncert solutions for class 10 maths chapter 5 arithmetic progression with formula and solution. chapter 5 class 10 maths Arithmetic Series
Here we solve ncert class 10th Maths Exercise 5 arithmetic progression┬аconcepts all questions with easy method with expert solutions. It help students in their study, home work and preparing for exam. Soon we provide NCERT class 10 Maths Exercise 5 question and answers. Soon we provided ncert solutions for class 10 maths chapter 5┬аarithmetic progression┬аin free PDF here. Class 10 Maths NCERT book pdf chapter 5 will be provide soon.┬а
ncert solutions for class 10 maths Chapter 5 arithmetic progression
class 10th maths Arithmetic Series
Exercise – 5
arithmetic progression Arithmetic Series
ncert solutions for class 10 maths Chapter 5 arithmetic progression
class 10th maths solution ex 5.1
Arithmetic Progression (A.P.) – An arithmetic progression is a list of numbers in which each term is obtained by adding a fixed number to the preceding term except the first term.
Common Difference (d) – This fixed number is called the common difference of the AP. Remember that it can be positive, negative or zero.
It is denoted by ‘d‘.
Denote the first term of an AP by a1, second term by a2, . . . , nth term by an and the common difference by d. Then the AP becomes a1, a2, a3, . . . , an.
So, a2 тАУ a1 = a3 тАУ a2 = . . . = an тАУ an тАУ 1 = d.
Exercise 5.1
1. In which of the following situations, does the list of numbers involved make an arithmetic progression, and why?
(i) The taxi fare after each km when the fare is $ 15 for the first km and $ 8 for each additional km.
(ii) The amount of air present in a cylinder when a vacuum pump removes \(\displaystyle \frac{1}{4}\) of the air remaining in the cylinder at a time.
(iii) The cost of digging a well after every metre of digging, when it costs $ 150 for the first metre and rises by $ 50 for each subsequent metre.
(iv) The amount of money in the account every year, when $ 10000 is deposited at compound interest at 8 % per annum.
Solutions :-
(i) The taxi fare after each km when the fare is $ 15 for the first km and $ 8 for each additional km.
This list will be in A. P.
first kilometer fare = $ 15
for each additional km = $ 8
so, second kilometer fare = 15 + 8 = $ 23
third kilometer fare = 23 + 8 = $ 31
So, 15, 23, 31, . . . let us form an A. P. because the common difference of all is 8.
(ii) The amount of air present in a cylinder when a vacuum pump removes \(\displaystyle \frac{1}{4}\) of the air remaining in the cylinder at a time.
Let the initial volume of air in the cylinder = V
the first time the pump air comes out = \(\displaystyle \frac{V}{4}\)
remaining air in the cylinder = \(\displaystyle \left( {V-\frac{V}{4}} \right)=\frac{{3V}}{4}\)
The second time the pump will blow out \(\displaystyle \frac{1}{4}\) of \(\displaystyle \frac{3V}{4}\) = \(\displaystyle \frac{3V}{16}\) the air.
so the remaining air = \(\displaystyle \frac{{3V}}{4}-\frac{{3V}}{{16}}=\frac{{12V-3V}}{{16}}=\frac{{9V}}{{16}}={{\left( {\frac{3}{4}} \right)}^{2}}V\)
Then a1 = V
a2 = \(\displaystyle \frac{3V}{4}\)
a3 = \(\displaystyle {{\left( {\frac{3}{4}} \right)}^{2}}V\)
Difference of two consecutive terms =
a2 тИТ a1 = \(\displaystyle \frac{{3V}}{4}-V=-\frac{V}{4}\) ┬а
a2 тИТ a2 = \(\displaystyle {{\left( {\frac{3}{4}} \right)}^{2}}V-\frac{{3V}}{4}=\frac{3}{4}V\left( {\frac{3}{4}-1} \right)=\frac{3}{4}V\times \left( {-\frac{1}{4}} \right)=-\frac{3}{{16}}V\)
The difference of two consecutive terms is not fixed, so the volume of air is not in A.P.
(iii) The cost of digging a well after every metre of digging, when it costs $ 150 for the first metre and rises by $ 50 for each subsequent metre.
Cost of first meter = $ 150
Second meter excavation cost = 150 + 50 = $ 250
Third meter excavation cost = 250 + 50 = $ 300
Arithmetic Progression (A.P.) тИТ 150, 200, 250, . . .
Common Difference = a2 тИТ a1 = 200 – 150 = 50
a3 тИТ a2 = 250 тИТ 200 = 50
So all have the same common difference, so the series is A. P.
(iv) The amount of money in the account every year, when $ 10000 is deposited at compound interest at 8 % per annum.
First year amount = $ 10000
Rate of compound interest = 8%
Amount in account after one year a1 = \(\displaystyle 10000\left( {1+\frac{8}{{100}}} \right)\)
Amount in account after two year a2 = \(\displaystyle 10000{{\left( {1+\frac{8}{{100}}} \right)}^{2}}\)
Amount in the account after three years a3 = \(\displaystyle 10000{{\left( {1+\frac{8}{{100}}} \right)}^{3}}\)
common difference = a2 тИТ a1
\(\displaystyle \begin{array}{l}=10000{{\left( {1+\frac{8}{{100}}} \right)}^{2}}-10000\left( {1+\frac{8}{{100}}} \right)\\=10000\left( {1+\frac{8}{{100}}} \right)\left( {1+\frac{8}{{100}}-1} \right)\\=10000\left( {1+\frac{8}{{100}}} \right)\left( {\frac{8}{{100}}} \right)\end{array}\)
a3 тИТ a2
\(\displaystyle \begin{array}{l}=10000{{\left( {1+\frac{8}{{100}}} \right)}^{3}}-10000{{\left( {1+\frac{8}{{100}}} \right)}^{2}}\\=10000{{\left( {1+\frac{8}{{100}}} \right)}^{2}}\left( {1+\frac{8}{{100}}-1} \right)\\=10000{{\left( {1+\frac{8}{{100}}} \right)}^{2}}\left( {\frac{8}{{100}}} \right)\end{array}\)
a2 тИТ a1 тЙа a3 тИТ a2 is not equal, Hence it is not in A.P.
2. Write first four terms of the AP, when the first term a and the common difference d are given as follows:
(i) a┬а= 10, d┬а= 10 | (ii) a = тИТ 2, d┬а= 0 |
(ii) a┬а= 4, d┬а= тИТ 3 | (iv) a = тИТ 1, d┬а= \(\displaystyle \frac{1}{2}\) |
(v) a = тИТ 1.25, d┬а= тИТ 0.25 | ┬а |
(i) a = 10, d = 10
First Term a1 = 10
Common Difference d = 10
Second Term a2 = a1 + d = 10 + 10 = 20
Third Term a3 = a2 + d = 20 + 10 = 30
Fourth Term a4 = a3 + d = 30 + 10 = 40
So, first four term of A. P. are = 10, 20, 30, 40
(ii) a = тИТ 2, d = 0
First Term a1 = тИТ 2
Common Difference d = 0
Second Term a2 = a1 + d = тИТ 2 + 0 = тИТ 2
Third Term a3 = a2 + d = тИТ 2 + 0 = тИТ 2
Fourth Term a4 = a3 + d = тИТ 2 + 0 = тИТ 2
So, first four term of A. P. are = тИТ 2, тИТ 2, тИТ 2, тИТ 2
(iii) a = 4, d = тИТ 3
First Term a1 = 4
Common Difference d = 3
Second Term a2 = a1 + d = 4 тИТ 3 = 1
Third Term a3 = a2 + d = 1 тИТ 3 = тИТ 2
Fourth Term a4 = a3 + d = тИТ 2 тИТ 3 = тИТ 5
So, first four term of A. P. are = 4, 1, тИТ 2, тИТ 5
(iv) a = тИТ 1, d = \(\displaystyle \frac{1}{2}\)
First Term a1 = тИТ 1
Common Difference d = \(\displaystyle \frac{1}{2}\)
Second Term a2 = a1 + d = \(\displaystyle -1+\frac{1}{2}=-\frac{1}{2}\)
Third Term a3 = a2 + d = \(\displaystyle -\frac{1}{2}+\frac{1}{2}=0\)
Fourth Term a4 = a3 + d = \(\displaystyle 0+\frac{1}{2}=\frac{1}{2}\)
So, first four term of A. P. are = тИТ 1, \(\displaystyle -\frac{1}{2}\), тИТ 0, \(\displaystyle \frac{1}{2}\)
3. For the following APs, write the first term and the common difference:
(i) 3, 1, тИТ 1, тИТ 3 . . . | (ii) тИТ 5, тИТ 1, 3, 7 . . .┬а |
(iii) \(\displaystyle \frac{1}{3},\frac{5}{3},\frac{9}{3},\frac{{13}}{3},…\) | (iv) 0.6, 1.7, 2.8, 3.9, . . . |
Solutions –
(i) 3, 1, тИТ 1, тИТ 3 . . .
First term for A. P. a1 = 3
Common Difference d = a2 тИТ a2 = 1 тИТ 3 = тИТ 2
(ii) тИТ 5, тИТ 1, 3, 7 . . .
First term for A. P. a1 = тИТ 5
Common Difference d = a2 тИТ a2 = тИТ 1 тИТ (тИТ 5) = тИТ 1 + 5 = 4
(iii) \(\displaystyle \frac{1}{3},\frac{5}{3},\frac{9}{3},\frac{{13}}{3},…\)
First term for A. P. a1 = \(\displaystyle \frac{1}{3}\)
Common Difference d = a2 тИТ a2 = \(\displaystyle \frac{5}{3}-\frac{1}{3}=\frac{{5-1}}{3}=\frac{4}{3}\)
(iv) 0.6, 1.7, 2.8, 3.9, . . .
First term for A. P. a1 = 0.6
Common Difference d = a2 тИТ a1 = 1.7 тИТ 0.6 = 1.1
4. Which of the following are APs ? If they form an AP, find the common difference d and write three more terms.
(i) 2, 4, 8, 16 . . . | (ii) 2, \(\displaystyle \frac{5}{2}\), 3, \(\displaystyle \frac{7}{2}\), . . . |
(iii) тИТ 1.2, тИТ 3.2, тИТ 5.2, тИТ 7.2 . . .┬а | (iv) тИТ 10, тИТ 6, тИТ 2, 2 . . . |
(v) 3, 3 + \(\displaystyle \sqrt{2}\), 3 + 2\(\displaystyle \sqrt{2}\), 3 + 3\(\displaystyle \sqrt{2}\) . . . | (vi) 0.2, 0.22, 0.222, 0.2222 . . . |
(vii) 0, тИТ 4, тИТ 8, тИТ 12 . . . | (viii) \(\displaystyle -\frac{1}{2},\,-\frac{1}{2},\,-\frac{1}{2},\,-\frac{1}{2}…\) |
(xi) 1, 3, 9. 27 . . .┬а | (x) a, 2a, 3a, 4a . . . |
(xi) a, a2, a3, a4 . . . | (xii) \(\displaystyle \sqrt{2},\,\sqrt{8},\,\sqrt{{18}},\,\sqrt{{32}}…\) |
(xiii) \(\displaystyle \sqrt{3},\,\sqrt{6},\,\sqrt{9},\,\sqrt{{12}}…\) | (xiv) 12, 32, 52, 72 . . . |
(xv) 12, 52, 72, 73 . . . | ┬а |
Solutions –
(i) 2, 4, 8, 16 . . .
Common Difference d = a2 тИТ a1 = 4 тИТ 2 = 2
a3 тИТ a2 = 8 тИТ 4 = 4
Because a2 тИТ a1 тЙа a3 тИТ a2, hence there is no A. P. from the given list of numbers.
(ii) 2, \(\displaystyle \frac{5}{2}\), 3, \(\displaystyle \frac{7}{2}\), . . .
Common Difference d = a2 тИТ a1 = \(\displaystyle \frac{5}{2}-2=\frac{{5-4}}{2}=\frac{1}{2}\)
a3 тИТ a2 = \(\displaystyle 3-\frac{5}{2}=\frac{{6-5}}{2}=\frac{1}{2}\)
The given list of numbers is a A. P. which d┬аis = \(\displaystyle \frac{1}{2}\)┬а
because a2 тИТ a1 = a3 тИТ a2 , hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
\(\displaystyle \frac{7}{2}+\frac{1}{2}=\frac{{7+1}}{2}=\frac{8}{2}=4\)┬а
a6 = a5 + d
\(\displaystyle 4+\frac{1}{2}=\frac{{8+1}}{2}=\frac{9}{2}\)
a7 = a6 + d
\(\displaystyle \frac{9}{2}+\frac{1}{2}=\frac{{9+1}}{2}=\frac{{10}}{2}=5\)
So, next three terms are 4, \(\displaystyle \frac{9}{2}\) and 5.
(iii) тИТ 1.2, тИТ 3.2, тИТ 5.2, тИТ 7.2 . . .┬а
Common Difference d = a2 тИТ a1 = тИТ 3.2 тИТ (тИТ 1.2) = тИТ 3.2 + 1.2 = тИТ 2
a3 тИТ a2 = тИТ 5.2 тИТ (тИТ 3.2) = тИТ 5.2 + 3.2 = тИТ 2
The given list of numbers is a A. P. which d is = тИТ 2
because a2 тИТ a1 = a3 тИТ a2 , hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
тИТ 7.2 + (тИТ 2) = тИТ 7.2 тИТ 2 = тИТ 9.2┬а
a6 = a5 + d
тИТ 9.2 + (тИТ 2) = тИТ 9.2 тИТ 2 = тИТ 11.2┬а
a7 = a6 + d
тИТ 11.2 + (тИТ 2) = тИТ 11.2 тИТ 2 = тИТ 13.2┬а
So, next three terms are тИТ 9.2, тИТ 11.2 and тИТ 13.2
(iv) тИТ 10, тИТ 6, тИТ 2, 2 . . .
Common Difference d = a2 тИТ a1 = тИТ 6 тИТ (тИТ 10) = тИТ 6 + 10 = 4
a3 тИТ a2 = тИТ 2 тИТ (тИТ 6) = тИТ 2 + 6 = 4
The given list of numbers is a A. P. whose common difference dis = 4
because a2 тИТ a1 = a3 тИТ a2 , hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
2 + 4 = 6┬а
a6 = a5 + d
6 + 4 = 10┬а
a7 = a6 + d
10 + 4 = 14
So, next three terms are 6, 10 and 14
(v) 3, 3 + \(\displaystyle \sqrt{2}\), 3 + 2\(\displaystyle \sqrt{2}\), 3 + 3\(\displaystyle \sqrt{2}\) . . .
Common Difference d = a2 тИТ a1 = \(\displaystyle 3+\sqrt{2}-3=\sqrt{2}\)
a3 тИТ a2 = \(\displaystyle 3+2\sqrt{2}-3+\sqrt{2}=\sqrt{2}\)
The given list of numbers is a A. P. whose common difference d is = \(\displaystyle \sqrt{2}\)┬а
because a2 тИТ a1 = a3 тИТ a2, hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
\(\displaystyle 3+3\sqrt{2}+\sqrt{2}=3+4\sqrt{2}\)
a6 = a5 + d
\(\displaystyle 3+4\sqrt{2}+\sqrt{2}=3+5\sqrt{2}\)
a7 = a6 + d
\(\displaystyle 3+5\sqrt{2}+\sqrt{2}=3+6\sqrt{2}\)
So, next three terms are \(\displaystyle 3+4\sqrt{2}\), \(\displaystyle 3+5\sqrt{2}\) and \(\displaystyle 3+6\sqrt{2}\)
(vi) 0.2, 0.22, 0.222, 0.2222 . . .
Common Difference d = a2 тИТ a1 = 0.22 тИТ 0.2 = 0.02
a3 тИТ a2 = 0.222 тИТ 0.22 = 0.002
The given list of numbers is not a A. P. whose common difference d is different.
Because a2 тИТ a1 тЙа a3 тИТ a2, hence there is not a A. P. from the given list of numbers.
(vii) 0, тИТ 4, тИТ 8, тИТ 12 . . .
Common Difference d = a2 тИТ a1 = тИТ 4 тИТ 0 = тИТ 4
a3 тИТ a2 = тИТ 8 тИТ (тИТ 4) = тИТ 8 + 4 = тИТ 4
The given list of numbers is a A. P. whose common difference d is = тИТ 4┬а
because a2 тИТ a1 = a3 тИТ a2 , hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
тИТ 12 + (тИТ 4) = тИТ 12 тИТ 4 = тИТ 16┬а
a6 = a5 + d
тИТ 16 + (тИТ 4) = тИТ 16 тИТ 4 = тИТ 20
a7 = a6 + d
тИТ 20 + (тИТ 4) = тИТ 20 тИТ 4 = тИТ 24
So, next three terms are тИТ 16, тИТ 20 and тИТ 24
(viii) \(\displaystyle -\frac{1}{2},\,-\frac{1}{2},\,-\frac{1}{2},\,-\frac{1}{2}…\)
Common Difference d┬а= a2 тИТ a1 = \(\displaystyle -\frac{1}{2}-\left( {\frac{1}{2}} \right)=-\frac{1}{2}+\frac{1}{2}=0\)
a3 тИТ a2 = \(\displaystyle -\frac{1}{2}-\left( {\frac{1}{2}} \right)=-\frac{1}{2}+\frac{1}{2}=0\)
The given list of numbers is a A. P. whose common difference d is = 0 рд╣реИред┬а ┬а
because a2 тИТ a1 = a3 тИТ a2, hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
\(\displaystyle -\frac{1}{2}+0=-\frac{1}{2}\)
a6 = a5 + d
\(\displaystyle -\frac{1}{2}+0=-\frac{1}{2}\)
a7 = a6 + d
\(\displaystyle -\frac{1}{2}+0=-\frac{1}{2}\)
So, next three terms are \(\displaystyle -\frac{1}{2}\), \(\displaystyle -\frac{1}{2}\) and \(\displaystyle -\frac{1}{2}\)
(xi) 1, 3, 9. 27 . . .┬а
Common Difference d = a2 тИТ a1 = 3 тИТ 1 = 2
a3 тИТ a2 = 9 тИТ 3 = 6
The given list of numbers is not a A. P. whose common difference d is different.
Because a2 тИТ a1 тЙа a3 тИТ a2, hence there is not a A. P. from the given list of numbers.
(x) a, 2a, 3a, 4a . . .
Common Difference d = a2 тИТ a1 = 2a тИТ a = a
a3 тИТ a2 = 3a тИТ 2a = a
The given list of numbers is a A. P. whose common difference d is = a рд╣реИред┬а ┬а
because a2 тИТ a1 = a3 тИТ a2 , hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
4a + a = 5a
a6 = a5 + d
5a + a = 6a
a7 = a6 + d
6a + a = 7a
So, next three terms are 5a, 6a and 7a
(xi) a, a2, a3, a4 . . .
Common Difference d = a2 тИТ a1 = a2 тИТ a = a (a тИТ 1)
a3 тИТ a2 = a3 тИТ a2 = a2 (a тИТ 1)
The given list of numbers is not a A. P. whose common difference d is different.
Because a2 тИТ a1 тЙа a3 тИТ a2, hence there is not a A. P. from the given list of numbers.
(xii) \(\displaystyle \sqrt{2},\,\sqrt{8},\,\sqrt{{18}},\,\sqrt{{32}}…\)
Common Differenc d = a2 тИТ a1 = \(\displaystyle \sqrt{8}-\sqrt{2}=\sqrt{2}\)
a3 тИТ a2 = \(\displaystyle \sqrt{18}-\sqrt{8}=\sqrt{2}\)
The given list of numbers is a A. P. whose common difference d is = \(\displaystyle \sqrt{2}\) рд╣реИред┬а ┬а
because a2 тИТ a1 = a3 тИТ a2, hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
\(\displaystyle \sqrt{{32}}+\sqrt{2}=\sqrt{{50}}\)
a6 = a5 + d
\(\displaystyle \sqrt{{50}}+\sqrt{2}=\sqrt{{72}}\)
a7 = a6 + d
\(\displaystyle \sqrt{{72}}+\sqrt{2}=\sqrt{{98}}\)
So, next three terms are \(\displaystyle \sqrt{{50}}\), \(\displaystyle \sqrt{{72}}\) and \(\displaystyle \sqrt{{98}}\)
(xiii) \(\displaystyle \sqrt{3},\,\sqrt{6},\,\sqrt{9},\,\sqrt{{12}}…\)┬а
Common Difference d = a2 тИТ a1 = 32 тИТ 12 = 23
a3 тИТ a2 = 52 тИТ 32 = 24
The given list of numbers is not a A. P. whose common difference d is different.
Because a2 тИТ a1 тЙа a3 тИТ a2, hence there is not a A. P. from the given list of numbers.
(xv) 12, 52, 72, 73 . . .
Common Difference d = a2 тИТ a1 = 52 тИТ 12 = 24┬а
a3 тИТ a2 = 72 тИТ 52 = 24
The given list of numbers is a A. P. whose common difference d is = 24 рд╣реИред┬а ┬а
because a2 тИТ a1 = a3 тИТ a2, hence there is a A. P. from the given list of numbers. The next three terms of which will be as follows –
a5 = a4 + d
73 + 24 = 97
a6 = a5 + d
97 + 24 = 121
a7 = a6 + d
121 + 24 = 145
So, next three terms are 97, 121 and 145
ncert solutions for class 10 maths Chapter 5 arithmetic progression Arithmetic Series
class 10th maths solution Arithmetic Series ex 5.2
The nth term of an A. P. with the first term a and the common difference d can be found by an = a + (n тИТ 1) d.
Note: – An is also called the general term of A.P.
If an A.P. has m terms, then am denotes its last term, which is sometimes also denoted by l.
1. Fill in the blanks in the following table, given that a is the first term, d the common difference and an the nth term of the AP:
┬а | a | d | n | an |
(i) | 7 | 3 | 8 | . . . |
(ii) | тИТ 18 | . . . | 10 | 0 |
(iii) | . . . | тИТ 3 | 18 | тИТ┬а5 |
(iv) | тИТ┬а18.9 | 2.5 | . . . | 3.6 |
(v) | 3.5 | 0 | 105 | . . . |
Solutions :-
(i) a = 7, d = 3, n = 8, an = ?
nth term of A. P. an = a + (n тИТ 1) d
an = 7 + (8 тИТ 1) 3
an = 7 + 7 ├Ч 3
an = 7 + 21
an = 28
8th term of A.P. is 28
(ii) a = тИТ 18, d = ?, n = 10, an = 0
nth term of A. P. an = a + (n тИТ 1) d
0 = тИТ 18 + (10 тИТ 1) d
0 = тИТ 18 + (9) d
0 = тИТ 18 + 9d
тИТ 9d = тИТ 18 (by transposition)
d = \(\displaystyle \frac{{18}}{9}\)
d = 2
Common Difference of A.P., d is = 2┬а
(iii) a = ?, d = тИТ 3, n = 18, an = тИТ 5
nth term of A. P. an = a + (n тИТ 1) d
тИТ 5 = a + (18 тИТ 1) тИТ 3
тИТ 5 = a + (17) тИТ 3
тИТ 5 = a + 17 ├Ч (тИТ 3) (by transposition)
тИТ 5 = a + (тИТ 51)
тИТ a = тИТ 51 + 5
тИТ a = тИТ 46
a = 46
First term of A.P., a is = 46
(iv) a = тИТ 18.9, d = 2.5, n = ?, an = 3.6
nth term of A. P. an┬а= a + (n тИТ 1) d
3.6 = тИТ 18.9 + (n тИТ 1) 2.5
3.6 = тИТ 18.9 + (2.5n тИТ 2.5)
3.6 = тИТ 18.9 + 2.5n тИТ 2.5
тИТ 2.5n = тИТ 18.9 тИТ 2.5 тИТ 3.6 (by transposition)
тИТ 2.5n = тИТ 25
n = \(\displaystyle \frac{{-25}}{{-2.5}}\)
n = 10
nth term of A.P., n is = 10
(v) a = 3.5, d = 0, n = 105, an = ?
nth term of A. P. an = a + (n тИТ 1) d
an = 3.5 + (105 тИТ 1) 0
an = 3.5 + 104 ├Ч 0
an = 3.5 + 0
an = 3.5
105th term of A.P. is 3.5
2. Choose the correct choice in the following and justify :
(i) 30th term of the AP: 10, 7, 4, . . . , is
(A) 97 | (B) 77 | (C) тИТ 77 | (D) тИТ 87 |
Solutions :-
a = 10, d = a2 тИТ a1 = 7 тИТ 10 = тИТ 3, n = 30, an = ?
nth term of A. P. an = a + (n тИТ 1) d
an = 10 + (30 тИТ 1) тИТ 3
an = 10 + (29) тИТ 3
an = 10 + 29 ├Ч (тИТ 3)
an = 10 + (тИТ 87)
an = тИТ 77
So, correct option is (C)
(ii) 11th term of the AP: тАУ 3, \(\displaystyle -\frac{1}{2}\), 2, . . ., is
(A) 28 | (B) 22 | (C) тИТ 38 | (D) \(\displaystyle -48\frac{1}{2}\) |
Solutions :-
a = тИТ 3, n = 30, an = ?
d = a2 тИТ a1 = \(\displaystyle -\frac{1}{2}-(-3)=-\frac{1}{2}+3=\frac{{-1+6}}{2}=\frac{5}{2}=2.5\)
nth term of A. P. an = a + (n тИТ 1) d
an = тИТ 3 + (11 тИТ 1) 2.5
an = тИТ 3 + (10) ├Ч 2.5
an = тИТ 3 + 25
an = 22
So, correct option is (B)
3. In the following APs, find the missing terms in the boxes :
(i) 2, . . . , 26
(ii) . . . , 13, . . . , 3
(iii) 5, . . . , . . . , \(\displaystyle 9\frac{1}{2}\)
(iv) тИТ 4, . . . , . . . , . . . , . . . , 6
(v) . . . , 38, . . . , . . . , . . . , тИТ 22
Solutions :-
(i) 2, . . . , 26┬а
a = 2, a3 = 26, n = 3
nth term of A. P. an = a + (n тИТ 1) d
26 = 2 + (3 тИТ 1) d
26 = 2 + 2d
2d = 26 тИТ 2
2d = 24
d = \(\displaystyle \frac{{24}}{2}\)
d = 12
because┬аto find the second term of the A.P.
So, a2 = a1 + d
a2 = 2 + 12
a2 = 14 answer
(ii) . . . , 13, . . . , 3
because the term between 13 and 3 is = \(\displaystyle \frac{{13+3}}{2}=\frac{{16}}{2}\) = 8
So, d = a4 тИТ a3 = 3 тИТ 8 = тИТ 5
a3 тИТ a2 = 8 тИТ 13 = тИТ 5
a2 тИТ a1 = тИТ 5
13 тИТ a1 = тИТ 5
a1 = 13 + 5┬а
a1 = 18
Hence A.P. is 18, 13, 8, 3
(iii) 5, . . . , . . . , \(\displaystyle 9\frac{1}{2}\)
a = 5, a4 = \(\displaystyle 9\frac{1}{2}\)
Because a4 = a + 3d
9.5 = 5 + 3d
3d = 9.5 тИТ 5
3d = 4.5
d = \(\displaystyle \frac{{4.5}}{3}\)
and a2 = a + d
a2 = 5 + 1.5
a2 = 6.5
Hence Arithmetic Progressions (A.P.) is 5, 6.5, 8, 9.5
(iv) тИТ 4, . . . , . . . , . . . , . . . , 6
a = тИТ 4, a6 = 6
Because a6 = a + 5d
6 = тИТ 4 + 5d
5d = 6 + 4
5d = 10
d = \(\displaystyle \frac{{10}}{{5}}\)
d = 2
The next terms of Arithmetic Progressions (A.P.) are =
a2 = a + d = тИТ 4 + 2 = тИТ 2
a3 = a + 2d = тИТ 4 + 4 = 0
a4 = a + 3d = тИТ 4 + 6 = 2
a5 = a + 4d = тИТ 4 + 8 = 4
Hence Arithmetic Progressions (A.P.) is тИТ 4, тИТ 2, 0, 2, 4, 6
(v) . . . , 38, . . . , . . . , . . . , тИТ 22
Let’s first term is a1 = 38 and 5th term is a5 = тИТ 22
Because a5 = a + 4d
тИТ 22 = 38 + 4d
4d = тИТ 22 тИТ 38
4d = тИТ 60
d = тИТ 15
If 2nd term is 38, then first term is =
a = a2 тИТ d
a = 38 + 15
a = 53
Now 3rd and 4th terms –
a3 = a + 2d
a3 = 53 + 2 (тИТ 15)┬а
a3 = 53 тИТ 30
a3 = 23
a4 = a + 3d
a4 = 53 тИТ 45
a4 = 8
5th term –
a5 = a + 4d
a5 = 43 тИТ 60
a5 = тИТ 7
Hence Arithmetic Progressions (A.P.) is 53, 38, 23, 8, тИТ 7, тИТ 22
4. Which term of the AP : 3, 8, 13, 18, . . . , is 78?
Solution :-
a = 3, d = a2 тИТ a1 = 8 тИТ 3 = 5, an = 78, n = ?
an┬а= a + (n тИТ 1) d
78 = 3 + (n тИТ 1) 5
78 = 3 + 5n тИТ 5
78 = 3 тИТ 5 + 5n
78 = тИТ 2 + 5n (by transposition)
5n = 78 + 2
5n = 80
n = \(\displaystyle \frac{{80}}{{2}}\)
n = 16
16th term of Arithmetic Progressions (A.P.): 3, 8, 13, 18, . . . is 78
5. Find the number of terms in each of the following APs :
(i) 7, 13, 19, . . . , 205 | (ii) 18, \(\displaystyle 15\frac{1}{2}\), 13, . . . , – 47 |
(i) 7, 13, 19, . . . , 205
a = 7
d = a2 тИТ a1 = 13 тИТ 7 = 6
an┬а= 205
n = ?
an = a + (n тИТ 1) d
205 = 7 + (n тИТ 1) 6
205 = 7 + 6n тИТ 6
205 = 7 тИТ 6 + 6n
205 = 1 + 6n
6n = 205 тИТ 1 (by transposition)
6n = 204┬а
n = \(\displaystyle \frac{{204}}{{6}}\)
n = 34
So, there are 34 term in Arithmetic Progressions (A.P.)┬а 7, 13, 19, . . . , 205
(ii) 18, \(\displaystyle 15\frac{1}{2}\), 13, . . . , – 47
a = 18
d = a2 тИТ a1 = \(\displaystyle 15\frac{1}{2}-18=\frac{{31}}{2}-18=\frac{{31-36}}{2}=\frac{{-5}}{2}=-2.5\)
an┬а= тИТ 47
n = ?
an┬а= a + (n тИТ 1) d
тИТ 47 = 18 + (n тИТ 1) тИТ 2.5
тИТ 47 = 18 + (тИТ 2.5n + 2.5)
тИТ 47 = 18 – 2.5n + 2.5
2.5n = 18 + 2.5 + 47 (by transposition)
2.5n = 67.5
n = \(\displaystyle \frac{{67.5}}{{2.5}}\)
n = 27
So, there are 27 term in Arithmetic Progressions (A.P.) 18, \(\displaystyle 15\frac{1}{2}\), 13, . . . , – 47
6. Check whether тАУ 150 is a term of the AP : 11, 8, 5, 2 . . .
a = 11
d = a2 тИТ a1 = 8 тИТ 11 = тИТ 3
an┬а= тИТ 150
n = ?
an┬а= a + (n тИТ 1) d
тИТ 150 = 11 + (n тИТ 1) тИТ 3
тИТ 150 = 11 тИТ 3n + 3
тИТ 150 = 14 тИТ 3n
3n = 14 + 150
3n = 164
n = \(\displaystyle \frac{{164}}{{3}}\)
No, – 150 is not a term of Arithmetic Progressions (A.P.) , 11, 8, 5, 2, . . . , Because no positive integer number is obtained.
7. Find the 31st term of an AP whose 11th term is 38 and the 16th term is 73.
a11 = a + (n тИТ 1) d
38 = a + (11 тИТ 1) d
38 = a + 10d …………..(1)
Similarly –
a16 = a + (n тИТ 1) d
73 = a + (17 тИТ 1) d
73 = a + 16d …………..(2)
by solving the pair of equations (1) and (2) –
\(\displaystyle \begin{array}{l}\,\,\,\,38=a+10d\\\,\,\,\,73=a+16d\\\underline{{-\,\,\,\,\,\,\,\,\,-\,\,\,\,-\,\,\,\,\,\,\,\,\,}}\\-35=\,\,\,\,\,\,\,\,-5d\end{array}\)
d = \(\displaystyle \frac{{-35}}{{-5}}\)
d = 7
To find the first term –
a11 = a + (11 тИТ 1) d
38 = a + (10) 7
38 = a + 70
a = 38 тИТ 70
a = тИТ 32
because we want to find 31th term so,┬а
a31 = a + (n тИТ 1) d
a31 = тИТ 32 + (31 тИТ 1) 7┬а
a31 = тИТ 32 + 30 ├Ч 7
a31 = тИТ 32 + 210
a31 = 178
So, 31th term of Arithmetic Progressions (A.P.) is 178
8. An AP consists of 50 terms of which 3rd term is 12 and the last term is 106. Find the 29th term.
Solution :-
a3 = a + (n тИТ 1) d
12 = a + (3 тИТ 1) d
12 = a + 2d …………..(1)
Similarly –
a50 = a + (n тИТ 1) d
106 = a + (50 тИТ 1) d
106 = a + 49d …………..(2)
by solving the pair of equations (1) and (2) –
\(\displaystyle \begin{array}{l}\,\,\,\,12=a+2d\\\,\,106=a+49d\\\underline{{-\,\,\,\,\,\,\,\,\,\,-\,\,\,\,-\,\,\,\,\,\,\,\,}}\\-94=\,\,\,\,\,\,\,-47d\end{array}\)
тИТ 47d = тИТ 94
d = \(\displaystyle -\frac{{94}}{{47}}\)
d = 2
To find the first term –
a3 = a + (n тИТ 1) d
12 = a + (3 – 1) 2
12 = a + 2 ├Ч 2
12 = a + 4
a = 12 – 4
a =┬а 8
because we want to find 29th term so,┬а
a29 = a + (n тИТ 1) d
a29 = 8 + (29 тИТ 1) 2┬а
a29 = 8 + 28 ├Ч 2
a29 = 8 + 56
a29 = 64
So, 29th term of Arithmetic Progressions (A.P.) is 64
9. If the 3rd and the 9th terms of an AP are 4 and тАУ 8 respectively, which term of this AP is zero?
Solution :-
3rd term of Arithmetic Progressions (A.P.) is a3 = 4
9th term of Arithmetic Progressions (A.P.) is a9 = – 8
a3 = a + (n тИТ 1) d
4 = a + (3 тИТ 1) d
4 = a + 2d …………..(1)
Similarly –
a9 = a + (n тИТ 1) d
тИТ 8 = a + (9 тИТ 1) d
тИТ 8 = a + 8d …………..(2)
by solving the pair of equations (1) and (2) –
\(\displaystyle \begin{array}{l}\,\,\,\,4=a+2d\\\,-8=a+8d\\\underline{{+\,\,\,\,\,\,\,-\,\,\,\,\,-\,\,\,\,\,\,}}\\\,\,12=\,\,\,\,\,-6d\end{array}\)
d = \(\displaystyle \frac{{-12}}{{6}}\)
d = – 2
To find the first term –
a3 = a + (n тИТ 1) d
4 = a + (3 тИТ 1) тИТ 2
4 = a + 2 ├Ч (тИТ 2)
4 = a тИТ 4 (by transposition)
a = 4 + 4
a = 8
We want to find nth term so,
an = a + (n тИТ 1) d
0 = 8 + (n тИТ 1) тИТ 2┬а
0 = 8 тИТ 2n + 2 (by transposition)
2n = 10
n = 10 /2
n = 5
So, 0 will be the 5th term of the Arithmetic Progressions (A.P.)
10. The 17th term of an AP exceeds its 10th term by 7. Find the common difference.
Solution :-
Let’s 10th term of Arithmetic Progressions (A.P.) = x
and 17th term of Arithmetic Progressions (A.P.) = x + 7
a10 = a + (n тИТ 1) d
x = a + (10 тИТ 1) d
x = a + 9 ├Ч d
– 9d = a – x …………..(1)
Similarly –
a17 = a + (n тИТ 1) d
x + 7 = a + (17 тИТ 1) d
x + 7 = a + 16 ├Ч d
x + 7 = a + 16d (by transposition)
тИТ 16d = a тИТ x тИТ 7 …………..(2)
by solving the pair of equations (1) and (2) –
\(\displaystyle \begin{array}{l}\,\,\,\,\,\,-9d=a-x\\\,\,\,\,-16d=a-x-7\\\underline{{\,\,\,\,+\,\,\,\,\,\,\,\,\,\,\,-\,\,\,\,\,+\,\,\,\,\,+\,\,\,\,\,\,}}\\\,\,\,\,\,\,\,\,\,\,7d=\,\,\,\,\,\,\,\,\,\,\,\,\,\,+7\end{array}\)
d = \(\displaystyle \frac{{7}}{{7}}\)
d = 1
So, the common difference of Arithmetic Progressions (A.P.) is 1
11. Which term of the AP : 3, 15, 27, 39, . . . will be 132 more than its 54th term?
Solution :-
a = 3
d = a2 тИТ a1 = 15 тИТ 3 = 12
54th term of Arithmetic Progressions (A.P.) = ?
a54 = a + (n тИТ 1) d
a54 = 3 + (54 тИТ 1) 12
a54 = 3 + 53 ├Ч 12
a54 = 3 + 636
a54 = 639
132 more than 54th term
So, 639 + 132 = 771
xth term of Arithmetic Progressions (A.P.) ax= ?
ax = a + (n тИТ 1) d
771 = 3 + (x тИТ 1) 12
771 = 3 + 12x тИТ 12
771 = 3 + 12x тИТ 12┬а
12x = 771 + 12 тИТ 3 (by transposition)
12x = 783 тИТ 3
12x = 780
x = \(\displaystyle \frac{{780}}{{12}}\)
x = 65
So, 65th term Arithmetic Progressions (A.P.) 3, 15, 27, 39, . . . will be more than 132 of 54th term.
13. How many three-digit numbers are divisible by 7?
Solution :-
3 digit first number divided by seven = 105
d = 7
So, A.P.: 105, 112, 119, . . . , 994
3 digit last number divided by seven = 994
So, a = 105
d = 7
nth term = 994
an = a + (n тИТ 1) d
994 = 105 + (n – 1) 7
994 = 105 + 7n – 7┬а
7n = 994 тИТ 105 + 7 (by transposition)
7n = 1001 тИТ 105
7n = 896
n = \(\displaystyle \frac{{896}}{7}\)
n = 128
Hence, 128 three digit numbers are divisible by 7.
14. How many multiples of 4 lie between 10 and 250?
Solution :-
First multiple of 4 greater than 10 = 12
Multiple of 4 less than 250 = 248
Common Difference d = 4
a = 12
nth term = 248
an = a + (n тИТ 1) d
248 = 12 + (n тИТ 1) 4
248 = 12 + 4n тИТ 4┬а
4n = 248 тИТ 12 + 4 (by transposition)
4n = 252 тИТ 12
4n = 240
n = \(\displaystyle \frac{{240}}{4}\)
n = 60
So there are 60 multiples of 4 between 10 and 250.
15. For what value of n, are the nth terms of two APs: 63, 65, 67, . . . and 3, 10, 17, . . . equal?
Solution :-
For first Arithmetic Progressions (A.P.) –
a = 63
d = a2 тИТ a1 = 65 тИТ 63 = 2
Suppose that xth term are equal, then┬а
an = a + (n тИТ 1) 2
ax = 63 + (x тИТ 1) 2
ax = 63 + 2x тИТ 2
For second Arithmetic Progressions (A.P.) –
a = 3
d = a2 тИТ a1 = 10 тИТ 3 = 7
Suppose that xth term are equal, then┬а
an = a + (n тИТ 1) d
ax = 3 + (x тИТ 1) 7
ax┬а= 3 + 7x тИТ 7
\(\displaystyle \begin{array}{l}\,\,\,\,{{a}_{x}}=63+2x-2\\\,\,\,\,{{a}_{x}}=\,\,\,\,3+7x-7\\\underline{{-\,\,\,\,\,\,\,\,\,\,-\,\,\,\,-\,\,\,\,\,\,\,+\,\,\,\,\,\,}}\\\,\,\,\,0\,\,\,\,=60-5x+5\end{array}\)
5x = 60 + 5 (by transposition)
5x = 65
x = \(\displaystyle \frac{{65}}{5}\)
x = 13
Hence, both the APs 63, 65, 67, . , , and 3, 10, 17, . , , The 13th term of is equal.
16. Determine the AP whose third term is 16 and the 7th term exceeds the 5th term by 12.
Solution :-
a3 = 16
Common Difference = d
So, a7 = a1 + 6d
a5 = a1 + 4d
According to Question –
a7 = a5 + 12
So, a1 + 6d = a1 + 4d + 12
6d – 4d = 12
2d = 12
d = 6
Then, a3 = a1 + 2d
16 = a1 + 12
a1 = 16 – 12
a1 = 4
So that A.P. will be 4, 10, 16, . . .
17. Find the 20th term from the last term of the AP : 3, 8, 13, . . ., 253.
Solution :-
d = a2 – a1 = 8 тИТ 3 = 5
So, second last term = 253 – 5 = 248
reversing the arithmetic progression
Suppose that A.P.: 253, 248, 243, . . .
So, now a = 253
d = a2 тИТ a1 = 253 тИТ 248 = – 5
20th term = x
an = a + (n тИТ 1) d
ax = 253 + (20 тИТ 1) тИТ 5
ax = 253 + (тИТ 100 + 5)
ax = 253 тИТ 100 + 5
ax = 253 тИТ 100 + 5
ax = 258 тИТ 100
ax = 158
So The 20th term from the last term in A.P.: 3, 8, 13, . . ., 253 will be 158.
18. The sum of the 4th and 8th terms of an AP is 24 and the sum of the 6th and 10th terms is 44. Find the first three terms of the AP
Solution :-
Sum of 4th and 8th terms of Arithmetic Progressions (A.P.) = 24
a4 = a1 + 3d
a8 = a1 + 7d
According to Question –
a1 + 3d + a1 + 7d = 24
2a1 + 10d = 24 . . . . . . . . . . . . (1)
Sum of 6th and 10th terms = 44
a6 = a1 + 5d
a10 = a1 + 9d
According to Question –
a1 + 5d + a1 + 9d = 44
2a1 + 14d = 44 . . . . . . . . . . . (2)
From equations (1) and (2) –
\(\displaystyle \begin{array}{l}\,\,\,\,2{{a}_{1}}+10d=24\\\,\,\,\,2{{a}_{1}}+14d=44\\\underline{{-\,\,\,\,\,\,\,\,\,-\,\,\,\,\,\,\,\,\,\,\,\,-\,\,\,\,\,\,}}\\\,\,\,\,0\,\,\,\,\,\,-4d\,\,\,\,=-20\end{array}\)
d = \(\displaystyle \frac{{-20}}{{-4}}\)
d = 5
Put the value of d in Eqn. (2) –
2a1 + 14 ├Ч 5 = 44
2a1 + 70 = 44
2a1 = 44 тИТ 70
2a1 = тИТ 26
a1 = \(\displaystyle \frac{{-26}}{{2}}\)
a1 = тИТ 13
So, first term is = тИТ 13
Second term is = a1 + d = тИТ 13 + 5 = тИТ 8
Third term is = a1 + 2d = тИТ 13 + 2 ├Ч 5 = тИТ 13 + 10 = тИТ 3
So, the first three terms of Arithmetic Progressions (A.P.) will be – 13, тИТ 8 and тИТ 3.
19. Subba Rao started work in 1995 at an annual salary of $ 5000 and received an increment
of $ 200 each year. In which year did his income reach яБа 7000?
Solution :-
Initial pay a1 = $ 5000
Increment d = $ 200
Salary after n years = $ 7000
So, an = a + (n тИТ 1) d
7000 = 5000 + (n тИТ 1) 200
7000 = 5000 + 200n тИТ 200
200n = 7000 + 200 тИТ 5000 (by transposition)
200n = 7200 тИТ 5000
200n = 2200
n = \(\displaystyle \frac{{2200}}{{200}}\)
n = 11 year
So after 11th year (1995 + 11) in 2006 the salary will be $ 7000.
20. Ramkali saved $ 5 in the first week of a year and then increased her weekly savings by $ 17.50. If in the nth week, her weekly savings become яБа 207.50, find n.
Solution :-
Saving of first week a1 = $ 50
Saving of every week d = $ 17.5
After nth week, her weekly savings is = $ 207.50
So, an = a + (n тИТ 1) d
207.50 = 50 + (n тИТ 1) ├Ч 17.5
207.50 = 50 + 17.5n тИТ 17.5
17.5n = 207.50 + 17.5 тИТ 50 (by transposition)
17.5n = 225 тИТ 50
17.5n = 175
n = \(\displaystyle \frac{{175}}{{17.5}}\)
n = 10
So nth week = 10 weeks